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SUMMARY 

On the basis of the dispersion relation of the generalized linear wave equation we derive a radiation boundary 
condition (RBC) that explicitly incorporates the physical parameters of the governing equation into the form 
of the boundary condition. Using finite element techniques we investigate the properties of the generalized 
RBC by examining forced and unforced solutions to the telegraph and Klein-Gordon equations in one 
dimension. The results show that within the limits of the physical parameters of the problem the generalized 
RBC is an improvement over the Sommerfeld RBC when the governing equation contains additional terms 
that influence the propagation. These gains are achieved without introducing any computational overhead. 
A two-dimensional example suggests that the 1D findings can generalize to higher dimensions. 
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INTRODUCTION 

The need to apply radiation boundary conditions (RBCs) occurs when waves or propagating 
signals reach the open boundaries of a computational domain. At such boundaries the outward 
(inward) travelling waves must be allowed to exit (enter) the domain without artificial wave 
reflection or trapping. In finite difference and finite element solutions of unbounded wave 
propagation problems, open boundaries arise as non-physical features resulting from mesh 
truncation. Although a variety of open boundary conditions have been studied (e.g. Re- 
ferences 1-3), Sommerfeld conditions are perhaps the most widely used. The study of Sommerfeld 
RBCs4 has been an active research area and various forms have been investigated 
References 5-15). 

The form of the Sommerfeld condition commonly implemented at the open boundary, 

ac ac 
- + c -= 0, 
at - an 
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is an approximation of the general condition of radiation derived by Sommerfeld for the wave 
equation 

where ( is the physical quantity of interest, p is a source term, c is the phase speed, t is time, Vz is the 
Laplacian operator and a/& is the derivative normal to the boundary. Condition (la) is exact 
when applied analytically or at infinity. It is only approximately correct when numerical 
discretization errors occur at a finite boundary or when the 1D condition is used in higher- 
dimensional problems. The approximation results in reflections that become more severe as the 
obliqueness of the angle of incidence of the impinging waves increases, as is the case when the 
location of the open boundary is near the source of the propagating waves. Although in certain 
applications exact formulations of open boundary conditions are available (e.g. References 16-18), 
the localized (and partially reflecting) RBCs have generally been favoured due to the ease in their 
implementation and their computational economies. Higher-order approximations that have 
succeeded in reducing reflections from the numerical boundaries include References 6, 19 and 20. 

It is safe to say that when a motion of interest is governed by the wave equation in the vicinity of 
the open boundary-either because the problem does not contain additional physical processes or 
because the open boundary has been placed far from the regions where sources are significant-a 
variety of adequate Sommerfeld-based RBCs are available. However, many problems are 
governed by more generalized wave equations which contain additional terms such as dissipation. 
Hence it is reasonable to expect that since the form of the governing equation has been altered to 
accommodate additional effects in these cases, so too must the form of the RBC. 

To illustrate this point, consider the simple 1D problem of a freely propagating disturbance of 
prescribed initial shape in a dissipative medium governed by the telegraph equation 

a25 2 2 -0 --+-?--C v (- , 
a t 2  at 

where z is a dissipation or loss factor (r>O). Numerical results for the freely propagating 
disturbance are shown in Figure 1 for the solution to (2) subject to the Sommerfeld RBC (la) and 
an extended grid solution which is free of boundary effects. 

The telegraph equation, which contains the additional dissipative term, behaves differently from 
its pure wave equation counterpart. The inclusion of dissipation alters the solution, combining the 
results of the wave equation and a diffusion equation: there is a propagating component and a 
component which decays on a diffusive timescale dependent on T. As shown in Figure 1, the 
Sommerfeld RBC is inadequate at the open boundary in the presence of dissipation. The 
Sommerfeld RBC produces a spurious steady state value which is absent from the extended grid 
solution. 

Another example is shown in Figure 2 where a one-dimensional form of the Klein-Gordon 
equation is solved subject to the Sommerfeld RBC. The Klein-Gordon equation can be written as 

where p is an elasticity factor (p>O).  Here a continual sinusoidal forcing has been applied and 
results are plotted for the dynamic steady state. The motion may be thought of as that of a flexible 
string embedded in a rubber sheath which adds a restoring force on each portion of the string 
(Reference 21, pp. 138-141). For the forced case the propagation is similar to that of the pure wave 
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Figure 1. A time sequence of telegraph equation propagation of an initial disturbance subject to the Sommerfeld RBC. 
The open boundary is located at the right edge ofeach plot. The length of the grid is I, r / o  =0.5 and the time instants occur 

0.5, 1.0, 1.5 and 2.0 periods into the simulation. See text for further details 

equation except that the additional elastic forces act to increase the wave speed. Figure 2 shows 
that the Sommerfeld RBC does not behave as a transparent boundary for this wave motion either. 

The inadequacy of the Sommerfeld condition as an RBC for the governing equations describing 
the motion in Figures 1 and 2 suggests that alternative RBCs are needed for cases where the wave 
equation has a more general form over the entire region of interest including the neighbourhood of 
the open boundary. This feature has been recognized previously and various schemes have been 
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Figure 2. A time sequence of a sinusoidally forced KleinCrordon equation solution subject to the Sommerfeld RBC. The 
open boundary is located at the right edge of each plot. The length of the grid is A, c 2 p 2 / 0 2  =050 and the time instants 

occur 20.125, 20.25, 20.375 and 20.5 periods into the simulation. See text for further details 

developed to account for the added effects near the boundaries. One of these is discussed in 
Reference 5 wherein the Sommerfeld condition is used, but rather than fixing the phase speed as a 
constant, it is numerically calculated from neighbouring grid points. 

The approach we take herein, rather than relying on the computation of the phase speed during 
the simulation, takes advantage of the a priori knowledge of the form of the governing equation to 
construct an RBC which will be consistent (although approximate) with the physics of the 
problem. We derive and study boundary conditions by examining the dispersion relationship for 
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the full equation, not just the wave equation limit. As a result, other terms will arise in the RBC 
which explicitly include the effects of additional factors in the governing equation. 

In the next section the derivation of a generalized RBC is given. This is followed by a description 
of the implementation of such a condition in the context of finite elements. Specific RBCs are then 
studied for the telegraph and Klein-Gordon equations. Their behaviour in both forced and 
unforced cases is examined relative to the solution computed on an extended grid where the 
boundary effects are absent. We focus on 1D results in order to investigate the simplest situations; 
a 2D extension is presented at the end of the paper for illustration purposes. 

THE GENERALIZED RADIATION BOUNDARY CONDITION 

Consider the linear 1D wave equation of the form 

We will construct a generalized RBC by studying an approximate form for the dispersion 
relationship of (4), identifying a partial differential equation (PDE) for which the approximation is 
the exact dispersion relation, and use this PDE as an enforceable boundary condition. 

Assume a plane wave solution of the form 

9 ( 5 )  i = t o e j ( - w t +  =) 

where j = ,/( - l), ti is the wavenumber, io is the amplitude and w is the angular frequency. 
Substituting (5) into (4) results in the dispersion relation 

w2 - c2 ti2 - c1 -jc2 ti + jc,o - c4 KO = 0, (6) 
which is rewritten as 

Note that we have not solved for t i;  we have only rearranged (6). Following Trefethen and 
Halpern,20 equation (7) is linearized according to 

(8) 

where x ( 1  x I < 1) represents the collection of terms with coefficients c1 . . . c4 from (7). Using the 
approximation of (8) in equation (7) yields 

J(1+ x) = 1 + x/2, 

which can be identified as the dispersion relation of the PDE 

aY+(c4+c)% +-[+--+--=O. c1 c2 a i  c 3 a i  

at2 2 - axat  2 2 ax 2 at 

Equation (10) becomes the proposed radiation boundary condition for the generalized wave 
equation (4). The requirement that 1 x 1 < 1 in (8) for the derivation of (10) implies that the problem 
should be largely governed by the wave equation, with other effects or terms having a smaller effect 
on the motion. This approximation will, of course, be more accurate the more ‘plane-wave-like’ 
the propagation is at the boundary and the more closely an equality in (8) can be achieved. 
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For the telegraph and Klein-Gordon equations (2) and (3), the proposed RBCs for outward- 
travelling waves become 

and 

respectively. 

FINITE ELEMENT IMPLEMENTATION 

In this section we detail the numerical (finite element) formulation for the telegraph equation and 
associated RBC (1 1). Implementation of the Klein-Gordon equation and its RBC (12) as well as 
other variants of (4) and (10) proceeds in a similar manner. We will be explicit wherever details 
for the implementation of the Klein-Gordon equation differ significantly from the telegraph 
equation. 

The weighted residual statement of equation (2) is 

where 4i is a scalar weighting function and the notation (a, b )  is the inner product operator (the 
integral over the domain of interest of the product of a and b). The weak form of (13) is 

+ ( c ’ V ~ , V ~ ~ ) = +  

where the surface integral includes the open boundary and A is the unit outward-pointing normal. 
The 1D form of (14) is 

where the right-hand-side term is evaluated at the open boundaries located at x = & L. 

basis functions 4j used in the approximation of the unknown 
The Bubnov-Galerkin variant of the method of weighted residuals is employed such that the 

5~1 i jbj (16) 

are identical to the weighting functions used in (13)-(15). In the calculations that follow, piecewise 
linear basis functions are implemented ( 1  D chapeau functions or 2D linear triangular elements). 
The domain integrations are computed by placing the quadrature points coincident with the 
element nodes.22 With this nodal quadrature rule, a centred (three-level) finite difference treatment 
of the time derivatives results in a fully explicit scheme in time. 

The difference expressions used for the time derivatives are 
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where k indicates the time level, At is the time step size and A[ = ["I - ik-  l .  Substituting these 
expressions into (14) and using (16) yields 

whereSij=((l + ~ A t / 2 ) 4 ~ 4 ~ ) , P ~ ~ = ( 2 4 ~ 4 ~ )  andQij=(c2V4i-V$j). Using thenodalquadrature 
rule for the spatial integrations, Sij collapses to a diagonal matrix Si with no matrix inversion 
required. Hence (1 8) produces an explicit expression for nodal values of [ at time k + 1 in terms of 
known values at k and k -  1. 

The RBC is introduced into the term on the right-hand side of (14). An explicit form of the 
boundary condition equation is enforced by making use of (17a,b) and solving for a l l a n .  For 
simplicity, consider the 1 D case, equation (1 5).  Time integration of (1 1) results in 

at ac -+ c -+- [=O, 
at ax 2 

which is solved for [,* and substituted into the right-hand side of (15) such that 

(19) 

In 2D the evaluation of the boundary integral at boundary node B leads to 

where Abl and Ab2 are the lengths of the boundary segments adjacent to the node of interest. For 
equally spaced nodes (with a node spacing h),  the right side of (14) can be simplified to 

for each of the B boundary node equations. 
Implementation of RBC (12) for the Klein-Gordon equation proceeds similarly except that the 

second-order time derivative cannot be removed and must be dealt with explicitly. An explicit 
form of boundary condition equation (12) can be written as 

Solving (23) for [, at the new time level produces 

which can be substituted into the right side of (15) to close the algebraic system since it consists 
only of the unknown boundary value of [ at the new time level plus known values of 5 and 5,. Note 
that the structure of any cf the reduced forms of the generalized RBC (10) will be similar to those of 
either equations (1 1) or (12). Hence the finite element implementation for other specialized RBCs 
resulting from (10) follows from the preceding discussion. 

* Note that outward travelling waves at x =  - L  result in a change in sign for the [, term in equation (19). 
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TEST CASES 

In this section we discuss the test cases used to study the behaviour of the generalized RBCs 
relative to the Sommerfeld condition. The effectiveness of these RBCs is examined by comparing 
with solutions computed on a larger (‘extended’) grid where the propagating quantity does not feel 
the effect of the open boundary, i.e. the simulation is terminated before the boundary conditions 
influence the solution. For the telegraph and Klein-Gordon equations the generalized RBCs 
along with the Sommerfeld condition are studied for both their forced and unforced responses. In 
the forced case the RBC behaviour is investigated as I x I in (9) is increased ( z / o  for the telegraph 
equation and c 2 p 2 / w 2  for the Klein-Gordon case) and as the open boundary is placed closer to 
the source of the wave motion. The parameters of interest are reported relative to a unit 
wavelength (A) and a unit period (P) of the forcing (i.e. equation (25)) .  The spatial and temporal 
resolutions for all 1D calculations were maintained at 100 nodes/;l and 200At lP  respectively, 
while the 2D example was computed on a grid with 40 nodesll and a time step size of 100AtlP.  

Telegraph R BC 

The forced case. The forced response case consists of the system initially at rest, [(x, t < 0) = 0, 
with the centre node following a sinusoidal time history of 

[(O, t )  = sin (ot) for t 2 0. (25) 

To ensure that all transients have decayed in this experiment, the time-stepping scheme is 

’ /  
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Figure 3. Calculated boundary value of the telegraph equation solution subject to various RBCs as a function of time once 
the dynamic steady state has been reached. Time is given in terms of number of periods into the simulation. The length of 

the grid is 2/4 and r/w=0.50 
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advanced 20 periods prior to sampling the solution. If the distance between the location of the 
forcing and the open boundary is one wavelength and ~/0=0.50, then the computed boundary 
values for the extended grid and telegraph RBC solutions are essentially indistinguishable-less 
than 1% difference-while the solution with the Sommerfeld RBC was within 3% of the overall 
peak (12% of the maximum boundary value) over one period. This level of accuracy was 
representative of the results obtained independent of z / o .  

A more significant deterioration of the solution computed with the Sommerfeld RBC occurs as 
the length of the grid is reduced. Figures 3 and 4 show the solutions when the boundary is one- 
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Figure 4. A time sequence of the spatial distribution of the telegraph solution subject to various RBCs. Times are 20.125, 
20.25, 20.375 and 20.5 periods into the simulation. The length of the grid is 1/4 and r/o=0.50 
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quarter wavelength from the excitation and z/w = 050. The inconsistency of the Sommerfeld RBC 
with the governing equation is apparent and the resulting errors are clear. The largest error in 
Figure 3 is 12% of the maximum value over one period for the Sommerfeld RBC (18% relative to 
the peak boundary value) compared to less than 1 Yo for the telegraph RBC. When z / o  is increased 
to 0.75, this error increases to 15% for the Sommerfeld condition (over 20% relative to the peak 
boundary value) but remains near 1 % for the proposed telegraph RBC. A reduction in error (to 
below 10%) in the Sommerfeld condition case can be achieved either by reducing z/w or by 
extending the grid to a length greater than two wavelengths. In the first case, by reducing T / W ,  the 
problem is closer to the pure wave situation; in the second case, by increasing the length of the 
domain, the signal reaching the boundary is diminished, thus reducing the absolute size of the 
computed solution (and therefore the error). 

The only troubling feature of the generalized RBC for the telegraph equation we have 
encountered thus far occurs in the case where the forcing contains a non-zero steady component. 
At a distance from the forcing corresponding to the position of the open boundary of the short 
grid, the extended grid solution shows the solution approaching the steady value imposed at the 
forcing end. This value is attained on a diffusive timescale. While the Sommerfeld condition 
solution on the short grid reaches the ‘correct’ boundary value-albeit on a timescale much too 
fast compared to the diffusive timescale-the telegraph RBC never reaches the correct value at the 
boundary. 

The unforced case. The unforced response test case has as initial conditions the positive branch 
of a cosine function, 

[(x, t=O)=cos(2nx/I) for 1xI<I/4, (264 

[(x, t=O)=O elsewhere, (26b) 

where I corresponds to the wavelength of the forced response case. Since no forcing is applied, the 
initial disturbance is simply allowed to propagate through the grid. 

Figure 5 shows the improvement obtained when the appropriate RBC is implemented for the 
telegraph equation. This is the same case as shown earlier in Figure 1. The steady state error found 
with the Sommerfeld RBC is removed and the time history of the solution is tracked more closely 
with the telegraph RBC (19). Quantitatively, the error induced by the Sommerfeld RBC is about 
12% in the steady state while that of the telegraph RBC peaks around 3% and is smaller than the 
Sommerfeld RBC error at any point in time. Further, as the length of the grid is shortened to half a 
wavelength, the error with the telegraph RBC solution is approximately 5% while that of the 
Sommerfeld condition is closer to 20%. The level of error introduced by these boundary 
conditions is also dependent on z: as z increases (to 0.75), the errors in the telegraph RBC increase 
(to 6%-8%) but are less than the errors of the solution computed with the Sommerfeld RBC. In 
general, the solution with the telegraph RBC has been observed to decay faster than the extended 
grid solution would indicate, an effect which becomes more prominent with increasing z. 

Rejection coefJicient analysis. Reflection coefficient analyses can also be used as a measure of 
the performance of RBCs.”. l 4  The reflection coefficient R can be found by assuming a solution to 
the telegraph equation of the form 

[ = ej(ax - 00 + R~ - j(ax + 0 1 ) )  (27) 

where a = ( w / c ) J ( l  +jz/w) from (7), and substituting this expression into the RBC under 
consideration. A smaller value of R corresponds to a smaller numerical reflection. Carrying out 
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Figure 5. Same as Figure 1 except that the telegraph equation solution subject to the generalized RBC has been included. 
The length of the grid is 1, t/w=0.5 and the time instants occur 0.5, 1.0, 1.5 and 2.0 periods into the simulation 

this procedure on equations (la) and (19), and assuming normal incidence and a boundary at 
x = 0, results in the reflection coefficients 
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when the telegraph equation governs and either (la) or (19) is used as the accompanying RBC. 
Figure6 shows the magnitude of these coefficients as a function of z/w, illustrating the 
improvement realized with the telegraph RBC (19. 

Klein-Gordon RBC 

The set-up for the forced and unforced cases is identical to those of the previous subsection 
for the telegraph RBC except that the governing equation is (3) and the proposed RBC is (12). 

Theforced case. Figure 7 shows the computed boundary value over the 21st period for a one- 
wavelength grid with c 2 p 2 / 0 2  =0.50. As before, the solution on the extended grid and that subject 
to the Sommerfeld RBC are plotted for comparison. Figure 8 shows snapshots taken at four 
equally spaced time increments during the first half-period in the Figure 7. These plots are the 
same as those of Figure 2 where now the solution subject to the generalized RBC is shown. 

The errors introduced by the RBCs are a function of space and time. The largest errors shown in 
Figures 7 and 8 for the Sommerfeld RBC approach 30% whereas the corresponding errors for the 
generalized RBC are less than 6%. These errors are also dependent on c2,u2/w2 and increase as 
this ratio increases. For example, with c 2 p 2 / o z  =0.75 the solution can be off by as much as 100% 
at a point for the Sommerfeld RBC, while remaining within 12% when the Klein-Gordon RBC 
(12) is used. If c2,u2/w2 is reduced, the errors in both RBCs are likewise decreased. A series of 
numerical experiments have shown that for c 2 p 2 / 0 2  G0.25 the Sommerfeld RBC behaves 
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Figure 6. Magnitude of the reflection coefficient as a function of r / w  when the telegraph equation governs and either the 
Sornmerfeld or generalized RBC is invoked 
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Figure 7. Computed boundary value for the KleinClordon equation solution subject to various RBCs as a function of 
time once the dynamic steady state has been reached. Time is given in terms of number of periods into the simulation. The 

length of the grid is 1. and c 2 p 2 / 0 2 = 0 5 0  

adequately, resulting in errors of the order of 10% or less. The solution with RBC (12) becomes 
almost indistinguishable ( ~ 2 % )  from the extended grid for such c 2 p z / 0 2  ratios. 

Unlike the telegraph equation where dissipation reduces the impact of reflections caused by 
RBCs as the length of the grid is increased, the errors remain of the same order for increasing grid 
length in this case. The shift in wavenumber” from o / c  to J [ (o /c ) ’ -p ’ ]  is not recognized 
by the Sommerfeld RBC; thus the incorrect phase and amplitude shifts observed in the solution 
for c. 

The unforced case. A representative example of the unforced solutions subject to RBCs for the 
Klein-Gordon equation is shown in Figure 9. The length of the grid and coefficient values are 
identical to Figure 5. Four snapshots are shown, starting at a time when the initial disturbance 
(26a, b) has not yet reached the boundary and thus when all three solutions are identical. At later 
times the interaction with the RBCs takes effect and deviations begin to appear in the different 
solutions. The generalized RBC for the Klein-Gordon equation is consistently closer to the 
extended grid solution than the Sommerfeld RBC. This remains true for both increasing and 
decreasing values of p and grid length. Variations of these parameters leads to a more severe 
deterioration of the solution with the Sommerfeld RBC (la) than with the Klein-Gordon RBC 
(12). Errors introduced by the Sommerfeld RBC are typically of the order of 6% of the initial value 
(20%-30% of the peak value at a given time instant) compared to 2% (6%-10% of the peak at a 
given time) for the Klein-Gordon RBC. 



778 M. JOHNSEN, K. D. PAULSEN AND F. E. WERNER 

1.01 

t= 20.125 P 
Extended Grid 

0.5 

0 .5  

-1 01 

1.01 

0.5 

L 

0 5  

-1 01 

t= 20375 P 
~ Extended Gri, - Klein-Gordon - Sommerfeld R 

0.5 

Distance (x) 

Extended Grid 

Sommerfeld RBC 

-1.01 I 
b 0.5 1 

Distance (x) 

Figure 8. Same as Figure 2 except that the KleinClordon equation solution subject to the generalized RBC has been 
included. The length of the grid is A, c2p2/w2 =050 and the time instants occur 20.125,20.25,20.375 and 203 periods into 

the simulation 

Refection coefJicient analysis. Reflection coefficient analysis for the Klein-Gordon case 
requires that a solution of the same form as (27) with a=(w/c),/[l - (cp/w)’]  be substituted into 
(la) and (12). Solving for R results in reflection coefficients for normal incidence at a boundary 
located at x = 0 of 



RADIATION BOUNDARY CONDITIONS 779 

t= 1.3 P 

e--e--e Klein-Gordon RBC 
I+-+-.+ Sommerfeld RBC 

Extended Grid 

0.5 

0.25 

6 0  

0.25 

0.5 

t= 0.5 P - Klein-Gordon RBC - Sommerfeld RBC 

Extended Grid 

I 
d 
i 

d 
i 

# 

0.5 
t= 2.5 P 
___ ExtendedGrid 

Klein-Gordon RBC - Sommerfeld RBC 
0.25 1 

0.25 

0.5 3 
0.5 

0.25 I t= 3.0 P 

Extended Grid - Klein-Gordon RBC - Sommerfeld RBC 

0 

Distance (x) Distance (x) 
Figure 9. A time sequence of KleinGordon equation propagation of an initial disturbance subject to various RBCs. The 

length of the grid is I, c2p2/w2 =0.50 and the time instants occur 0.5, 1.5, 2.5 and 3.0 periods into the simulation 

Figure 10 provides a plot of the magnitude of these coefficients as a function of c2p2/w2.  The 
improvement, particularly over the range c2p2/w2 < 0.50, obtained with the generalized RBC is 
evident. 

A 2 0  example 

As an example of implementing the generalized RBC in higher dimensions, a 2D calculation is 
included. While a systematic study comparable to that undertaken for the 1D case has not been 
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Figure 10. Magnitude ofthe reflection coefficient as a function ofc2p2/w2 when the KleinCrordon equation governs and 
either the Sommerfeld or generalized RBC is invoked 

completed, demonstration of feasibility is important with respect to finite elements given that this 
method is typically utilized for multidimensional problems. The 2D test case is a straightforward 
extension of the 1D telegraph case described above. The initial conditions are given by 

l (x ,  y, t=0)=cos(xd/2do) for d < d o ,  (304 

((x, y, t=O)=O elsewhere, (30b) 
where do is the radius of a prescribed circle centred at (xo, yo) and d is the distance between a point 
of interest and the centre of the initial disturbance (xo, yo) :  

For the 2D wave equation the mound should collapse and a ring of fluid propagate radially 
outwards from its initial location. The 2D case shows a different behaviour than its 1D 
counterpart (Reference 21, pp. 843-847). While the solution for the 1D wave equation is always 
positive or zero (the initial displacement is also positive) and consists of two propagating pulses of 
identical shape and half the height, the solution of the 2D wave equation overshoots the ‘zero’ level 
and takes on negative values. Thus the pulse which spreads radially is followed by a wake which 
rebounds to the zero displacement level with time. Similarly, the solution for the 2D telegraph 
equation is a combination of the 2D wave equation solution and the diffusive effect discussed 
earlier. 

Figure 11 shows a series of perspective plots for the telegraph RBC solution as a function of 
time. The wake trailing the initial wave front is evident and the disturbance propagates out of the 
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Figure 1 1 .  Perspective plot of a 2D telegraph equation solution subject to the generalized (telegraph) RBC for increasing 
time (upper left to lower right). The simulation shown was advanced a total of 700At with each plot representing a 50At 

increment. Relative to the half-wavelength cosine initial disturbance the grid is 1.251, long and 06251, wide 
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computational domain without significant reflection. The plots in Figures 11 show that the 
solution is noisy. These errors are of the order of the grid spacing and result from insufficient 
resolution. The noisy portions of the solution are largely restricted to the centre of the grid where 
the most rapid changes occur (especially at early times). While these results are strictly 
preliminary, they are encouraging in that the generalized RBC has allowed the essential physics to 
be captured despite the use of a truncated grid. 

CONCLUSIONS 

A generalized radiation boundary condition for wave propagation is presented. Departures from 
the wave equation render the Sommerfeld RBC inconsistent with the governing equation and 
introduce non-negligible errors even in the simplest cases. To address this problem, a generalized 
form of the RBC is constructed by considering the dispersion relation for the general linear wave 
equation. 

Two cases of the generalized RBC were studied by implementing finite element solutions for the 
telegraph and Klein-Gordon equations. Both forced and unforced problems were examined 
under simplified conditions. Compared to the Sommerfeld condition, the generalized RBC is 
desirable because it reduced the errors to only a few per cent when the generalized form of the wave 
equation governed the motions of interest. This level of improvement was observed in both the 
forced and unforced problems. 

Only waves impinging at normal incidence on a boundary were studied in detail-corres- 
ponding to the 1D cases considered herein. Although the 2D results suggest that the main findings 
will generalize to higher dimensions, systematic studies in 2D and 3D remain to be done. 
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